Mikro- ja nanokuituja ruoantuotannon sivuvirroista

Dr. Antti Laukkanen

Oy Keskuslaboratorio – Centrallaboratorium Ab / Betulium Oy 12.2.2025

FarKos Seminar

Nanofibers from vegetables

Nanofibers from wood

World of Cellulosics

4

Non-wood cellulose

5

Production of sugar beet based MFC

Betulium built the first commercial production line in Säkylä, Finland 2019

- Utilizes sugar beet pulp located beside a sugar factory
- Produces several MFC product types
 - Liquid, wet granulate, or dry products
 - Can be packed in IBC's, bulk, or big bags

Capacity is dependent on product type

• Certain grades are being produced in commercial quantities and others are still in demonstration stage

Production schema

Microfibrillated cellulose and cellulose nanofibers from sugar beet

Native types

Expanded network of cellulose microfibrils. Scale bar 500 nm

Derivatized types

Individually dispersed elementary fibrils. Scale bar 500 nm

Examples of different product forms

How small is it?

Diameter of a single hair is 50–100 μm

Diameter of a single cellulose nanofibrils is 4 nm

Main functions

Two separate properties, and products, to be commercialized

(1) MFC as a binder

- High surface area, 100 m²/g
- Strong, stiff, and impermeable material
- Very good binder

(2) MFC as a rheology modifier

• Gel former, stabilizer, rheology modifier

Nanocellulose in water

Gel structure is formed by interlocked cellulose fibrils or fibril bundles

- No thermal melting, like in xanthan
- No changes in conformation at harsh conditions
- Decomposition rate is slow due to fibrillar structure, i.e. each structural element is made of several polymer chains

Flow behavior of MFC/CNF

High yield stress is needed to stabilize suspensions...

... and allow spreading or injection

Global market for water soluble polymers

40 B\$ Market

- Binders, flocculants, gelants, thickeners, stabilizers,...
- 9.0 million ton by 2019
- \$40 Billion by 2019

Global market for water soluble polymers

Depending on the cost, nanocellulose has a remarkable potential to replace existing products

Applications for nanocellulosics

Nanocellulose aerogels in battleships

– US Navy 1895

SHIPPING CITILITO JE RY CARLOADS

Herbert Myric, A Revolution in Agriculture, Library of Congress ...If a shell from enemy pierces the side of a ship below water line, the cellulose will swell up quickly that no water will get in to the ship...¹⁷

CURL